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In electron transfer reaction between the oxidized

form of A and the reduced form of B,

on i Bred AN B

there is the "diabatic" potential surface formed from the

electronically-uncoupled reactants and environment and the

diabatic surface formed from the electronically-uncoupled

products and environment. The electronic interaction between

A and B introduces new surfaces--the adiabatic potential energy

surfaces, discussed for example by the principal investigator

in Ann. Rev. Phys. Chem., 15, 155 (1964).

It is desirable to

develop a numerical method to treat the dynamics of molecular

motion on those surfaces, to calculate the reaction rate. 1In

the present Technical Report Dr. Babamov formulates such a

method. 1In practice, to reduce the number of guantum states

needed in the computation one would need to simplify the actual

many-dimensional problem before applying the method. One such

application has been made by Drs. Babamov and DiGiacomo of

this laboratory.

R.

A. Marcus

Principal Investigator
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ABSTRACT
A new method for solving the coupled equations in the adiabatic
representation which arise in quantum mechanical treatment offatomtc and
molecular collisions is developed. The solutions of the uncoupled
adlabafic equations, obtained from the coupled equations in the adiabatic
representation by neglecting the coupling terms, are used to derive a set
of new exact equations for the purely Inelastic effects of the collision,

The solutions of the new equations are practically nonoscillatory and

can be solved numerically with 1ittle computational effort,

\
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I. INTRODUCTION

The computational wave mechanical treatment of inelastic atomic and mole-

cular collisions is frequently reduced to solving a set of coupled ordinary

linear differential equations.'”® The coupled ordinary differential equations

: are obtained by expanding the solution of the time-independent Schrodinger

equation for the system in a product basis set consisting of known wavefunc-
tions for the internal motion and for the angular relative motion, multiplied
by unknown coefficients which depend on the relative radial motion coordinate.

The choice of the basis set funﬁtions for the internal motion determines
the structure of the resulting coupled equations. When the wavefunctions for
the internal motion of the separated particles are used in the basis set the
coupled equations are said to be in the diabatic representation. 0On the
other hand when the solutions of the Schrodinger equation for the colliding
pair at each fixed interparticle distance are used in the expansion, the resulting
equations are in the adiabatic representation, 37¢

The coupled equations in the diabatic representation are used often
in the treatment of vibrationally and rotationally inelastic molecular
collisions occurring on a single electronic potential energy surface.”:®
Developing methods for solving the coupled equations in the diabatic repre-
sentation has thereby received considerable attention, partlcu\arly in the
past decade, and a number of highly efficient methods for solving them have
b§en developed,7~'°

The equations in the adiabatic representation are frequently
encountered when & rigorous treatment of an electronlcally nonadiabatic atomic
collision Is attempted,''+!'? They have a somewhat more complex mathematical
structure and déveloplng methods for solving them has received relatively

little attention in the 1iterature.'® '* The most widely used of the new’"’




efficient methods for solving the equations in the diabatic represen= 1

tation have not been adapted for solving the adiabatic equations. Although

a direct numerical integration of the equations in the adiabatic representation
Is possible and has been conducted for some model problems'3: !4 the only method
used has been direct numerical integration of the coupled equations based

on a polynomial approximation to the wavefunction. The inelastic atomic

collisions have in practice usually been treated instead by solving a set of |

diabatic equations constructed in some approximate manner,'% or still more

approximately by solving the corresponding so-called classical path equations. '¢

The latter equations are obtained by treating the electronic motion quantum ]
mechanically and the relative motion of the atoms classically.

In this paper a stable and efficient method for solving a set of coupled
ordinary differential equathns in the adiabatic representation is outlined. l

The method can be used for treating electronic transitions and charge trans-

fer in atomic collisions, which can be rigorously formulated in the adia-

batic representation®''? The electronic transitions in molecular collisions S

can also be treated by the present method since they are also conveniently

formulated in the adiabatic representation. '3

Both the spatial extension of the couplln§ region'” and the number of
coupled states'® are smaller in the adiabatic .representation than in the
diabatic one, Since the equations in the diabatic representation and the
equations in any other representation in which both diabatic and adiabatic
coupl ing elements appear can be straightforwardly converted into a pure
adiabatic representation®;® the present method could also be used in cases
when a diabatic - or soms other rspresentation is most convenient for initial

formulation of the problem




The Hamiltonian for the system and the usual quantum mechanical coupled
equations are given in Sec. II. The structure and the symmetry properties of

the coupled equations are anmalyzed in the Appendix.

= The solution of the coupled equations is performed in three stages. First,
a set of uncoupled second order differential equations, obtained from the
equations in the adiabatic representation by neglecting the coupling matrix

elements, is solved using one of the §tandard methods in the 1iterature.®

The sélugions of these uncoupled equations are then used in Sec. III to '
convert the equations in the adiabatic representation into a set of new
first-order coupled differential equations by means of a variation of con-
stant type of treatment. The dependent variables in these new equations are
typically much more slowly varying than the original ones. The resulting
first-order equations (Eq. 3.14) can then be solved using one of the standard
methods to evaluate the scattering matrix elements.

The method is illustrated in Sec. IV using as an example the evalu-
ation of inelastic transition probabilities for a Het + Ne collision in
the two-state approximation. The model problem used has been treated
previsouly by other methods, and so the feasibility of the present treat-

ment can be verified.




11. THE COUPLED EQUATIONS

The Schrodinger equation for a system of two colliding particles which

have internal structure is given [n reduced units by:

Hy=[-vg = T vp + V(r,R)] y=gy § (2.1)
where the vector R is defined by its magnitude R and the two angles describing
its orientation denoted collectively by Q; R denotes the relative position
of the centers of mass of the two particles, The vector r denotes all
internal coordinates. The sum Evr’ is over all the internal coordinates.

The solution of the time-independent Schrodinger equation with the
Hamiltonian (2.1) can be expanded in a product basis set consisting of a
set of known wavefunctions X‘L'Q,;R) which depend on £ and ol for every value

22
of R, multiplied by R-dependent c'oefficlents:‘

v= % 4;(R) % (L.Q:R) (2.2)

It is also convenient to choose X‘ as a set of real functions.

substituting (2.2) into the Schrodinger equation and integrating over r
and 0 a set of coupled ordinary differential equations for the radial

coefficient wavefunctions jl(R) is obtained, 3,4, 42
p2y,+L (2P, .pY +B. 4, +V ¥ ] =€y o (2.3)
i ) 1Yy i ) [

where

end b

Vi = Vpe = Olntingd  (2.4b)




H' contains the entire potential plus the kinetic energy terms for
the internal coordinates r and for the orientational coordinates 0. If a
rotating .coordinate system is used H' also contains 211 the terms stemming

from the rotation of the coordinate system, ' The b}ackets () denot?

integration over r and

- ~a

Eq. (2.3) can be written compactly in matrix notation:

(Ip* + Pp + B+ V] 4= Ey , (2.5)

= o~

where § is a column vector with elements ¥; and P, B, and V ere square
matrices with elements given by (2.4), while the symbol I denotes unit matrix.

Applying p to the scalar product of two xi's, and noting that <xi|xj)

equals 611 one has

Thus, P is @ hermitian matrix. 1If the basis set X; is complete the matrix B

can be expressed in terms of the matrix P and its derivative®

P? + (pp), e

where the operator p is not considered to act beyond the close of the paren-

theses, and the elements of P2 are obtained from those of P by matrix multi-
plication. Using (2.7) the coupled equations (2.5) become

(I+Y 1=-¢ i
I=1p% + 26p + (pR) + P? = (1p + P)? (2.9)

It is In practice easier to evaluate pp ‘ﬁdfﬁ’ in (2.9) than the B in (2.5) and (2.4)
since evaluation of B rc;u!res numerical evaluation of second derivatives
of Xy
Eq. (2. 8) Is a set of ordinary differential equations, usuaiiy an Infinite
set, and is a partly integrated form of the Schrodinger equation, fully

squivalent to (2.1). The matrix operator on the 1. h.s. of (2.8) then represents

o




the Hamiltonian operator H from (2.1) as applied to the space of coefficient
wavefunctions ti(R). The matrix operator T in (2.9) arises from the
radial part of the kinetic energy operator in (2.1) and can be viewed as
the radial kinetic energy part of the matrix Hamiltonian operator.
Ihe matrix V represents an effective matrix potentipl for the radial
mot ion,
It is convenient for simplifying the following discussion to consider

instead of .Eq. (2.8), which involves the vector y ,the following matrix

equation:

[1p? + 2pp + (pR) + P? + V]4 = Ey (2.10)

where § denotes an n by n square matrix which contains as columns n linearly

independent vector solutions § of (2.8).
The matrix V in (2.10) can be rewritten as
o int

v=y0ay'nt "?J =8, (e; + 2, (2,41)/R) (2.11)

where €; is the eigenvalue of the internal (&-dependent) part of the basis
function X;» and zi is the angular momentum associated with the angular (Q
dependent) part of the X;- In the limit of large R the adiabatic coupling

int

matrix P and the potential coupling matrix v vanish and the coupled

equations (2.11) can be written as a set of uncoupled equations
(12 + )y = £y ; (2.12)

the diagonal angular terms 2'(£l+l)/R2. which also vanish for large R have been
retained in (2.12) to simplify the stfucture'of the phases in the scattering
matrix. The solution of (2.12), which for large R is equivalent to (2.11) is
given in terms of Riccati-Bessel functions and can be written for large R using

the assymptotic form of the Riccati-Bessel functions as:

§(R) = E*(R)C* + E*(R)E™,. (R = =) (213)




where FL are diagonal matrices with elements

Fri(R) = (172K /2 expl+i(k,R-2;71/2] (2.14)

i.e. FIT and Fi; are the diagonal elements of the two |inearly-independent
:asymptotic solutions of (2.14). The factor (1/2)'/2 has been inserted to
normal ize them to a Wronskian, F?I%;i-i?ir;i' equal to -i, where the dot
denotes d/dR. The gi in (2.13) are integration constant matrices. The
choice of the phases in (2.14) is a matter of convention; different
phases will be'ﬁsed in Sec. 3 to define the purely inelastic scattering
matrix.

The scattering matrix (S-matrix) is usually introduced as the matrix

that converts €~ in (2.13) into g*"z.

ne

+=s¢" - (2.15)

ne

The choice of the basis set XW(LJQ) in (2.2) determines the structure
of the matrices in (2.10). Two particular choices for which the structure
of (2.10) is qualitatively simplified are of practical interest. If the basis
set is chosen to be the set of eigenfunctions of the internal orientatlonal-part
of the Hamiltonian for large R the matrix P vanishes identically (due to the lack
of dependence of the basis set on R) and all the coupling in the differential
equation is contained in the effective potential energy matrix V. Such basis
set is a diabatic basis set and the resulting set of coupled equations is
in the diabatic representation, ¢

The coupled equations in the diabatic representation are of the form

(1p? + V)y =Ey (2.18)
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If the basis set is chosen instead to be the set of eigenfunctions of the
3nternal-;rientational part of the Hamiltonian, i.e.,of H'atevery R the off-diagonal
elements of !(2.4b)'vanish identically, sc that all the coupling is dynamic, and
it-is contained in the kinetic energy part of the Hamiltonian. The diagonal
glements of v then obey the well known non-crossing rule,'® i.e., they cannot
cross at any R unless the matrix element of P that couples them vanishes,

In the adiabatic representation, the equations are of form:

“[Ip? + 2pp + (pP) + P2+ V )y = Ey (2.17)

where V is a diagonal matrix with elements,
Vij = Sigth (2.18)

end ¢, is the i-th eigenvalue of H' for a given R. All the coupling is contained
in the kinetic energy matrix, which in turn is given in terms of the adiabatic
coupling matrix P.

It should be noted that in some cases (e.g., when the angular coupling is
not negligible) the eigenfunctions of the internal-orientational part of the
Hamiltonian H' for every R may be difficult to eva!qate directly. In such
cases using an approximation to the adiabatic basis set (e.g., product of
eigenfunctions of the internal part of H multiplied by spherical harmonics)
would lead to nonzero of-diagonal elements in ¥ and the coupled equations (2.10)
will not be in the adiabatic representation. The coupled equations can then
be converted to the adiabatic representation by diagonalizing the potential
energy matrix ¥ at every R, and transforming the kinetic energy matrix
accordingly. - The same can be done when the diabatic representation can be
formulated and it is easier to set up. The transformation matrices needed

to convert the equations betw;en the adiabatic, diabatic and any other general
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representation are given in the appendix. A rigorous discussion of the

symmetry properties of the coupled equations is also given in the appendix.
Once a set of equations in the adiabatic representation has been con-
structed, either directly or by transforming the equations in some other

representation the method described in the next section can be used to con-

struct their solution.




II1. EQUATIONS FOR THE AMPLITUDE COEFFICIENTS
Using Eq. (2.9), Eq. (2.10) can be rewritten as
i (;p_+ P)? ¥ = p’y ' My = (E-v,j)e,j. (3.1)

For most atomic collisions the elements of the coupl ing radial momentum
matrix P in (2.10) are small throughout the collision range. In such
cases a good approximation to the solution of (3.1) can be obtained

by neglecting the coupl ing matrix P andvsolving the resulting set .of uncoupled

second order differential equations,

Iplg =

9 (3.2)

II:

Equation (3.2) can be solved numerically more easily than (3.1);

some good analytic approximations also exist.? © Approximating the solu-
tion of (3 l) by @ solution of (3.2) is for a system of two atoms essentially,
the Born—Oppenheimer approximatlon A correspends physically to the neglect
of the effect of the relative atomic motion cn the electronic states of the
system, For slow atomic collisions the Born-Oppenheimer approximation is
usuelly already a very good one except for one Important special case: If
two or more matrix elements of the diagonal matrix V are nearly degenerate

for some values of the radial coorﬁinate R the corresponding matrix elements
in the matrix P became often large in the same region and cannot be neglected
any more, The occurrence of such avoided crossing of the diagonal matrix
elements of the matrix V as a function of ‘the radial coordinate is the main
reason for electronic transitions in slow atomic collisions, The breakdown of
the Born-Oppenheimer approximation In this case Is localized to a relatively
narrow spatial region around the avolded crossing; Eg. (3.2) Is however,

sti11 an excellent approximstion to (3, 1) outside the avoided crossing region,
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The solution of (3.1) subject to a given initial condition at small R
can be factored at any point into the solution of (3.2) subject to the same
initial condition and a set of additional correction factors which reflect
the nonvahishing of the matrix P.

The main features and the typical oscillatory structure of the solution
of (3.1) are already contained in the solution og (3.2). The additional
correction factors vary more slowly with R than the solution 6f (3.1) itself
and are practically constant outside the region where the matrix P is large.
In the‘remalnder of this section the differential equations for the above
correction factors are derived.

Any solution of each of the uncoupled equations
P2¢ii = ﬂ’; "”:l (3.3)

can be written as a linear combination of two linearly-independent solutions

+

of (3.3) denoted by U,

and uii'

811 =Y}

+ -
T TRATUTE (3.4)

The two linearly independent solutions of (3.3), U';i and

u;l,will be taken to be the solutions with the asymptotic form

u*ﬁ e [l/(zk")'/’]exp [il(k'R -t ,)] » fate '(3. 5)

. and
which are complex conjugates of each otherjAhave been normal ized in such a

way that their Wronskian, U?'U;' - UT|U;'; Is equal to =i.

The general solution of (3.2) can then be written in form of a linear

combination of the two solutions 2* and U~

+ 4+ e -
g0y ki




The only nonvenishing elements of the matrices g+ are the diagonal
ones def ined by (3.5), while the gi are diagonal constant matrices,
One seeks now a solution to the coupled adiabatic equations (3.1)

in terms of the solutions of (3.2) g+ and U-,

¥ = U'g*(R) + u"(R) . (3.7)
with the coefficients u%j being functions of R, Since the matrices gi are
diagonal ,the elements of yare given by

¥y = Uiy (R) + UGaqy(R). (3.8)

Since there are twice as many n?} in (3.7) - as there are wave func-
tions 'ij from which the q%} can be determined, one is free to impose n?
constraints in form of n? algebraic or differential relations between the
qf], where n is the size of the matrices in (3.1). While the n? constraints
are completely arbitrary at this point, the choice of the constraint will
affect the ease with which the resulting equations will be solved. The most

slowly changing coefficients a%} result from a constraint that makes the a%}

come closest to being an average of the absolute value of tke rapidly osci;-
lating wavefunction solutions of the coupled equations. In the classical
1imit, when the period of oscillations of the wavefunctions goes to zero the
q?] become a measure of the probability of finding the particle in the
channel.l. for a system initially in channel J, since if one integrates the

absolute square of the wavefunction in a small region the value will be propor=-

tional to the value of the absolute value square of the much smoother functions

3 .
1k

~ Comparing (3.1) and (3.2) it can be seen that applying the operator
F = (Ip+P) twice to the solution of (3.1) has the same effect as applying the

operator p twice to the solutions of (3.2). The operator 5’,
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= (D)t (3.9)

when applied on the solutions of (3.2) thus acts effectively only on the

elastic part of the solution, given by the solutions of (3.3 ), U% but not

on the additional factors, g*.

E*Utot + UTo” = (pPUN)at + (p?U7T)gT (3.10)
Defining the operator ::(Lp*fﬂ itself in an analogous way would then yield

the equations for separating the elastic and inelastic effects as first

order differential equations. The operator F with such properties, which can

be called an adiabatic momentum operator, can be formally defined by

n n
U=_.E n=1,2

=

L]
c

L[}

(3.11)

E(p'gt) = o. n=0, |

Applying this F twice to y, yields the same result as applying the F2 given

by (3.9). From (3.11) one finds

Utpg* + UTpg” + P(Utg* + yo7) = 0 (3.12)

The above constraint Is clearly not the usual variation of constant con-
straint 2'=23 (namely that 2+ p g‘ + Upg equals zero),
Using (3.12) and (3.2), Eq. (3.1) can be reduced to a set of first

order differential equations for the 5%,

i —— e ————————— 3
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)
c
o

o

(3.13)

Since the conled equations (3.13) have real coefficients a purely real
set of solutions can be constructed, Since a solution post-multiplied by a
, constant matrix is also a solution of (3.13) the two real matrix solutions
can be used to generate a solution with any desired boundary ;onditions,
including the complex ones. Eq, (3.13) can then be reduced to an equation of

the same size with real coefficients,

[
d
rry (3.14)
APA - APA  APB - APB
— M W !
where
W= (172)/2 (s i8) oF = (1/2)12 (b T ia) (3.15)

and the matrix P (purely imaginary for a real basis set X) is defined in (2.4).

The above equations are convenient for numerical work since their inte-

gration requires real arithmetic only,
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IV. A NUMERICAL EXAMPLE - TRANSITION PROBABILITIES

AND THE SCATTERING WAVEFUNCTION FOR AN ATOM-ION COLLISION

In this section & numerical solution of the Eq, (3,14) derived
n Sec. II is presented, The transition probabilities and the

scattering wavefunction are 'evaluated for an atom-ion collision

in the two-state approximation.

The physical system chosen is the excitation collision
Het + Ne(2pt) = He' + Ne¥(2p®3s) (4.1)

at collision energy of 70.9 e.v, (2.60566 Hartrees), The above inelastic
process has been studied extensively in the past decade, both computational-
ly!3,28-28 and experimentally, 2°~ % Themain features of the experimental
results can be explained by a two-state curve crossing model in which the
coupling results from the radial part of the Hamiltonian only, so that the
angular momentum is preserved througﬁg the collision. The coupled equations
in the diabatic reprecentationwhich describe mathematically the process

with the above spproximations can be writtenas'?

p, 0 vll v|2 "| *|g 'll ‘l!
" - (4.2)
0 P 12 Va2 ¥2, ¥, V2, Va2

The potential matrix elements used are those of ref, 15,

v o e w————— - . — - " — ——— -
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&. (4.2) can be converted into two coupled equations in the
adiabatic representation by solving the algebraic problem of diagonaliza-~
tion of the matrix Y, which for two states can be performed analytically,
The‘transformatlon matrix is given by (A.7) and the resulting set of

adiabatic equations can be written in matrix form as

P Pi2? Wiy O Yivo Y2 Vir e
+ , = E (4.3)
P2 p Y L Y21 ¢22 Y21 Y21
where
Wiz = % (Vi + Viz) + [(Vii=Vi2) 274 + V2] /2 (4.4)
and
Piz = 1(dt/dR)2/( 1422 ¢ = (V22-V,,)/2V,, (4.5)

The method from Sec, 2 can now be applied to (4.3) directly, The
corresponding uncoupled adiabatic equations are given by
p? O Wno 11 P2 i P2
. = E (4.6)
0 [ 0 w, P21 @22 @21 @22
The solutions of (4.6) which are needed for solving (4.3) were constructed
numerically using Gordon's method. ® ®? Any desired solution of (4.6) is

then written as

—— v —— .+ . - -
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i Vi2 Ay 0 CITEIT By 0 bpy by,

V21 V22 0 Ay [e21 232 0 8, by . ba2
where A' and Bi are two linearly lndepebdent real solutions of each .
» ("1..6)':- Ai is the solution which decays exponentially in the classically
forbidden region and is given by I\d(l/zki)'/2 cos (kir —gl) asympotically
in the classically allowed region, Bi is the other linearly independent
solufion ﬁofmalized to a unit Wronskian, whfch is given asyﬁpotically in
the classically allowed region as BAI(I/ZkiY/’ sin (kir - g).

The initial conditions on the matrices 2 and b used in the calculations are"
25y 3y, 0 byy by 0 0
s- - 2 - (4.9)

The integration of the equations was started at & value of the radial coor-
dinate low enough to obtain converging results for the transition probabilities
to three significant figures. Starting the inela'stic integration at 0.1 a,u, to
the left of the outermost turning point was usually sufficient. The integra-
tion was stopped at a value of R = Rf where the matrices a and b became

constant to the same accuracy, (~5 a.u.) The matrices %"'( Rf) and %-( Rf) were
then constructed from the final values of the matrices a and b according

to (3.15) andan inelastic scattering matrix S' was constructed

$'= " (R) g (ry)1"! ' (4,9)

The convent ional scattering matrix S can be obtained in terms of the matrix
s' by comparing thelr definitions (2.16) end (4.9). Since the reference

solutions Fi; (2.14) end Dﬁ (3.5) differ by the elastic phase shift n‘dinlz-a'

the relation between S and §' Is given by

o o com——— o . - ———————— — < o o o S et e —— g —— . T s 2 ——eiiim .-
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where n is a diagonal matrix with elements

oy = exp (10) (4.11)

= The numerical integration was performed by solving (3.14 ) using a
standard coupled differential equations integration subroutine,®*? The

4 results of the calculation and several angular moﬁenta fér total energy

of the collision of 70.9 e.v. (2.60566 A.U.) are given in the second column

of table 1., The third column numbers are from Ref. 28 and have been obtained

by solving the equivalent set of equations in the diabatic representation (4.2)

The elements of the first row of the matrices a and b as 2 function of R
for the actual imposed initial condition in the numerical integration,

(Eq. (4.8)) are presented graphically on part b of Figure 1. Those are the

quantities calculated as a function of R in the actual numerical integration and the

virtual absence of any oscillations or instabilities is evident from the
figure.

The first row of the wavefunction on the I.h.s. of (4.6) as a function
of R in the vicinity of the ''crossing point' is presenéed graphically on
part c of the Figure. The highly oscillating wave functions shown here
are the quantities which wouia have to be followed numerieally by the
integration routine If a solution of (4.3) had been attempted directly

for the same Initial condition,
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The physically meaningful boundary condition on the matrices g,'+ and

g,' at large R is that the matrix g'(Rf) be a unit matrix. In that case,

the first and second rows of the matrices a* and g~ for every R correspond

to the solution for which the particle is incoming in the lower or upper

channel, respectively. The matrices g,+

and o~ corresponding to such

. boundary conditions which will be denoted with _c_'* .and c“can be obtained by

post-multiplying the matrices ;_3* and g~ for every R with the inverse of

the final value of the matrix g™ namely [g~(R¢)]™'.

€(R)= gt (B~ (RN (4.12)

The elements of the first row of the wavefunction y corresponding to such '

boundary condition can be obtained at every R by pre-multiplying the matrices
et

=

and ¢~ with the reference solution matrices U* and 2- as defined by (3.5),

respectively,and are shown on part d of the figure,

-
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V. DISCUSSION

The method for treating inelastic collisions presented here is based
on an explicit separation of the elastic and inelastic effects of the col-
;islon. It is shown that the oscillatory structure of the coupled equations,
which is one of the main sources of difficulties-in developing & solution
method, is almost entirely due to elastic effects. The solutions of the
elastic part of the problem, which can be obtained relatively easily, can
then be used to derive a set of equations for the purely inelastic effects.
The variables in the latter are a measure of the probability of finding the
particles in a given internal state at any point in the collision and the
virtual absence of oscillations in their change with the interparticle dis-
tance in the model problem treated here is evident from the numerical cal-
culations presented.

The present formalism can be shown to be the exact analog of some
semiclassical > and uniform semiclassical?’ treatments in the literature.
To obtain the latter one only needs to substitute the semiclassical or
uniform semiclassical approximation to the elastic wavefunction: the equa-
tions for the inelastic effects remain the same. In such a way the present
formalism offers & simple way of deriving the above approximations and
also allows one to express the final equations in simple
form,

Xntroducing some additional classical 1imit approximations, as shown

in ref. 34, reduces the present equations to the classical path equations,

which forms 8 convenient framework for intuitive interpretation of the varisbles

in the inelastic equations in terms of their classical 1imit behavior. A
more detailed discussion of the semiclassical aspects of the problem is

given elsewhere, %, 3%
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APPENDIX.

1. Transformations between the equations in different representations

The coupled equations (2.8, 2.9), rewritten here
(Ip + B)?p + Yy = Ey (A.1)

can be converted into the adiabatic representation using the unitary

transformation M which diagonalizes the potential energy matrix v

B = v (a.2)
to transform the solution matrix Y

¢ = By (A.3)
The tilde symbol ~ above denotes a hermition conjugate matrix.
The transformed equations in the adiabatic representation are obtained by
substituting (A.2) and (A.3) in (A.1) and pfemu\tip!ying the resulting
equation by M, yielding

@p + B2)y® + V77 = gy (A.4)

where
% = H(zp + )Y (A.5)

Similarly, the coupled equations (A.1) can be converted into the diabatic
representation by means of the unitary transformation which diagonalizes the

kinetic energy part of the Hamiltonian

N(Ip + B)?N = 1p? (.6)
A solution of the second order differential equation (A.6) is given by the

solution of tﬁe first order differential equation

pN = PN (A.7)




2]
€q. (A.7) gives @ rigoroﬁs definition of the diabatic represehtation
for the case of atomic collision problems where it ecannot be easily
defined in terms of the asymptotic basis sets.’ However, since the trans-~
formation or a set of equations In the adiabatic representation into the

disbatic representation requires solving a coupled set of differential

equations (A.7), it is practically never used,

+he definition of the adiabatic and the diabatic representaiion given
in Sec. 2 is based on the choice of the internal-orientational basis set
that leads to a particular representation. Alternatively, the adiabatic
representation has been defined® by the vanishing of the off-diagonal elements
of the matrix V, and the diabatic one by the vanishing of the diagonal
elements of P in (2. 9). When the basis set X is complete the two alternative
definitions are identical.®'3% When the basis set used to derive the equa-
tions is not complete they are however different. The ‘'adiabatic' set of
equations obtained by diagonalizing the potential matrix in a finite diabatic
set of equations corresponds to using an approximate expansion of the eigen-
functions of the internal part of the hamiltonian at every R in terms of
the asymptotic internal states. The ''diabatic'' set of equations obtalned
by diagonalizing the kinetic energy matrix operator in & finite adiabatic
set of equations similarly corresponds to equations obtained by using an
approximation to the asymptotic internal wavefunctions in terms of the local
eigenfunctions of the internal hamiltonian at every R, and it is weakly

dependent on R.

2. Symmetry Properties of the Coupled Eqﬁations

Eq. (2. 8) Is & self-adjoint second order matrix differential equa-
tion in the sense that the hermitisn conjugate of the solution is an inte-

grating factor for the equation and cen be used to reduce its order by one. 3%
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Premul tiplying (2.11) by the hermitian conjugate of the solution, taking the

hermitian conjugate of the matrices on both sides, and subtracting one gets

¥p?y - (P?)y + 2[Tepy + (pY)PY + Y(pP)y) = © (n.8)

where the explicit form of T (2.9) has been used.

Rearranging, (A.8) can be written as
- (RD)y + 2Ll = pEY) = 0 (A.9)
oy - (g + 2@ = pEEY)
or integrating botﬁ'sfdes, after substitufing p = -i(d/de)

Yoy- (PDy+ 2(Fy) = £(F.4) = const (A.10)

Hence, the hermitian conjugate of the solution of (2,11) is an integrating
factor for the same equation and the equation is self-adjoint, Equation
(A.10) can be viewed as the analog of the flux conservation relation for
the Schrodinger equation., It can be obtained from the flux conservation
relation for the Schrodinger equation simply by substituting the basis
set expansion for the wavefunction and integrating over the r,Q dependence, 5
The value of the constant matrix F can be evaluated at R=0 where the wave-
function matrix § vanishes and it is zero.

The self-adjoint property of the coupled equations or their "Hermicity"
has been & point of some confusion in the literature., It was argued (c.f.
ref. 3; sec. 9) that the matrix B (2.7) is not hermitian and therefore
the coupled equations are not Hermitian, While the patrlx B does indeed
represent 8 non self-adjoint term in (2. 9) the matrix operator Pp Is also
not self adjofnt. The easiest way to recoénize this point is to notice that Pp
is @ product of two noncommuting self adjoint matrix operators so that the

whole Hamiltonian metrix operator is self-adjoint, as one would expect.
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Table I: The Transition Probabilities ,S.zjz for He + Ne _ He + Ne*at collision

« energy of 70,9 ev and different angular momenta

Angular Momentum ° | Si212(this work) |S12|¥(ref. 28)
= 200 0.215 0.215

300 0.146 0,146

310 0.202 ‘ 0,202

320 0.0941 0. 0941

330 0.0226 0.0226




Legend to Figure 1

The adiabatic potential energy matrix elements wi‘ and the coupling matrix
element P,, are shown in (a) as a function of the radial coordinate R.

TA; Wyi, Wa2 and E are in Hartrees, while P,,/10 is in bohr='. The first row
:elements of the matrices 2, solid 1ine, and 2, dashed 1ine, obtained

by solving numerically (3.14) with the initial conditions (4.6) are shown in
(b). The wavefunction (4.5) for the same initial conditions is shown in
(c). The actual wavefunction, corresponding to no incoming wave in the
upper channel is shown in (d), where the solid line describes the real

part and the dotted line the imaginary part of the wavefunction. In each
case (b) to (d), the upper curve or curves refer to channel 2 (the more
highly'lnternally excited channel), and the lower curve or curves refer

to channel 1. The structure of the adiabatic potential matrix elements

around the avoided crossing is shown in the insert on part a.
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